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Glossary

a-Bungarotoxin (a-Bgt): toxin from snake venom. a-Bgt binding is considered

to represent the distribution of a7-subunit-containing nACh receptors.

DEG: degeneration of certain neurons. In Caenorhabditis elegans, there are 42

different nACh receptor subunits, including the deg-3 group. des-2 is another

gene in this group.

DES: degeneration suppressor. Mutations in the gene encoding this protein

suppress the degeneration caused by deg-3.

Drosophila Da7 mutant: excisions of P elements in the Da7 subunits lead to
Insect nicotinic acetylcholine (nACh) receptors are
molecular targets of insecticides such as neonicotinoids
that are used to control disease-carrying insects and
agricultural pests. To date, several insect nACh receptor
subunits have been identified, indicating different
nACh receptor subtypes and pharmacological profiles.
Because of the difficulty in expressing functional insect
nACh receptors in heterologous systems, new research
tools are needed. Studies on insects resistant to the
insecticide imidacloprid and on laboratory-generated
hybrid and chimaeric nACh receptors in vitro have pro-
vided information about the molecular basis of receptor
diversity, neonicotinoid resistance and selectivity. Addi-
tionally, recent results indicate that the sensitivity of
insect nACh receptors to imidacloprid can be modulated
by intracellular phosphorylation mechanisms, which
offers a new approach to studying insect nACh receptor
pharmacology.

Molecular diversity of insect nicotinic acetylcholine
receptor subunits
Insect nicotinic acetylcholine (nACh) receptor subunits,
like vertebrate nACh receptor subunits, consist of a large
N-terminal extracellular domain involved in agonist bind-
ing, followed by three transmembrane regions (TM1–TM3,
with TM2 lining the channel), a large intracellular loop, a
fourth transmembrane domain (TM4) and a C-terminal
extracellular region (Figure 1). The presence of two vicinal
cysteine residues, equivalent to Cys192 and Cys193 in the
electric organ (Torpedo marmorata) a1 subunit, which are
known to be involved in ACh binding, defines nACh recep-
tor a subunits in insects, vertebrates and all other species
whereas non-a subunits (b, g, d or e) lack this motif. From
comparison of the insect and vertebrate nACh receptor
subunit sequences, it is evident that six insect monophy-
letic groups diverged from a common ancestor distinct from
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the one that led to the vertebrate subunits (e.g. a1, a2, a3,
a4, a8 and b1 subunits). One such group includes all the b

subunits except for the Drosophila Db2 and Db3 subunits.
Additional subunits share a common ancestor with the
vertebrate a7 and a8 subunits, which characteristically
form a-bungarotoxin (a-Bgt; see Glossary)-sensitive nACh
receptor subtypes, thereby defining a monophyletic group
of a7-like subunits [1,2] (Figure 2). Consequently, as pre-
viously shown [3,4], subunit combinations determine the
distinct pharmacological properties of insect nACh recep-
tors and the sensitivity to neonicotinoid insecticides of
insect nACh receptors compared with their vertebrate
counterparts. The pharmacological properties of insect
nACh receptors have been investigated using several dif-
ferent approaches, including vertebrate–insect hybrid
receptors and mutation of residues believed to be involved
in ligand binding. In the present review, we discuss emer-
ging data on the pharmacological properties of insect nACh
receptors and offer new tools for their study.

Evidence for different nACh receptor subtypes
The subunit composition of native insect nACh receptors
remains unclear, largely because the heterologous expres-
sion of functional insect nACh receptors has proved diffi-
cult. Nevertheless, behavioural studies using different
nicotinic agonists and antagonists [5,6] or Drosophila
Da7 mutants [7] have established that the insect central
several alleles.

nACh receptor subtype: a specific combination of identical (homomeric) or

different (heteromeric) subunits that forms a pentameric nACh receptor.
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Figure 1. Insect nACh receptor subtypes. (a) nACh receptors are pentameric macromolecules composed of five identical subunits (homomeric receptors) or different

subunits (heteromeric receptors) arranged around a central pore, which is selective to Na+, K+ and Ca2+. (b) Each subunit comprises four transmembrane domains, TM1–

TM4, with TM2 lining the ion channel. Between transmembrane domains TM3 and TM4 is a potential phosphorylation site. (c) An example of potential insect

a-bungarotoxin-sensitive and -insensitive nACh receptors from Drosophila melanogaster, and other nACh receptor subtypes from Schistocerca gregaria, Manduca sexta

and Myzus persicae. Question marks denote unknown subunits.
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nervous system expresses different nACh receptor
subtypes. This finding is reinforced by electrophysiologi-
cal studies showing that, as in vertebrates, insect neurons
can express different nACh receptor subtypes (Table 1).
Pharmacological profiling shows that there exist at least
two pharmacologically distinct classes of nACh receptors,
www.sciencedirect.com
a-Bgt-sensitive and a-Bgt-insensitive. As in vertebrates,
insect a7-like subunits (e.g. Da5, Da6 andDa7 subunits of
Drosophila) are potential candidates to form a-Bgt-sensi-
tive receptors [7,8]. However, Da1, Da2, Da3, Db1 and
Db2 subunits can be copurified by a-Bgt affinity chroma-
tography, indicating that: (i) nACh receptors comprising



Figure 2. Phylogenetic tree showing relationship of insect nACh receptor and vertebrate neuronal subunits. A Drosophila GABAA subunit, DmGABAA (GenBank accession

number AAA28556) was used as an outgroup. Apis mellifera: Ama2 (AY540846), Ama3 (AF514804), Ama7-1 (AY500239), Ama7-2 (AY569781). Drosophila melanogaster: Da1

(X07194), Da2 (X52274), Da3 (Y15593), Da4 (AJ272159), Da5 (AAM13390), Da6 (AF321445), Da7 (CAD86936), Db1 (X04016), Db2 (X55676), Db3 (AJ318761). Heliothis

virescens: Hva1 (CAA04056), Hva2 (AF096678), Hva3 (AAD09809), Hva7-1 (AF143846), Hva7-2 (AF173847), Hvb1 (AF096880). Locusta migratoria: Lma1 (AJ000390), Lma2

(AJ000391), Lma3 (AJ000392), Lmb (AJ000393). Manduca sexta: Msa1 (Y09795), Msb1 (AJ007397). Myzus persicae: Mpa1 (X81887), Mpa2 (X81888), Mpa3 (AJ236786),

Mpa4 (AJ236787), Mpa7-1 (CAI54102), Mpa7-2 (CAI54103), Mpb (AJ251838). Schistocerca gregaria: Sga1 (X55439). Nilaparvata lugens: Nla1 (AAQ75737), Nla2 (AAQ75731),

Nla3 (AAQ75739), Nla4 (AAQ75738), Nlb1 (AAQ75742). Chilo suppressalis: Csa1 (AAL40742). Aphis gossypii: Agosa1 (AAM94383), Agosa2 (AAM94382), Agosb1

(AAM94383). Ctenocephalides felis: Cfa1 (ABB42999), Cfa2 (ABB43000), Cfa3 (ABB43001), Cfa4 (ABB43003), Cfa7 (ABB43004), Cfa8 (ABB43002), Cfb1 (ABB43005). Bemisia

tabaci: Bta3 (CAI54098), Bta4 (CAI54099), Bta7-2 (CAI54100). Anopheles gambiae: Agama1 (AAU12503), Agama2 (AAU12504), Agama3 (AAU12505), Agama4 (AAU12506),

Agama5 (AAU12508), Agama6 (AAU12509), Agama7 (AAU12511), Agama8 (AAU12512), Agama9 (AAU12513), Agamb1 (AAU12514). Homo sapiens: a2 (U62431), a3
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Table 1. Pharmacological profiles of insect native nACh receptorsa

Species Identified cell types Ligands tested Refs
Agonists Antagonists

Periplaneta

americana

DUM neurons ACh, Nic, Imi (nACh receptor 1) D-TC (inhibition of nACh receptor 1), Mec,

a-conotoxin (inhibition of nACh receptor 2)

[41,42]

Df motor neuron ACh, Nic, carbachol 5-HT, dopamine and octopamine reduce

the amplitude of nACh responses

[49]

Thoracic ganglia

neurons

ACh, clothianidin, Epi, Imi (inhibition of the

desensitized component, nAChD)

a-Bgt (inhibition of both nAChD and the

nondesensitized component, nAChN),

MLA (inhibition of nAChN)

[40]

Apis mellifera Kenyon cells ACh and carbamylcholine (full agonists), Nic,

Epi, Cyt and Imi (partial agonists)

a-Bgt, DHbE and MLA (full agonists),

Mec, D-TC and Hex (weak blockers)

[50,51]

Antennal lobe

neurons

ACh; Epi and Imi (partial agonists); olefin and

5-OH-Imi

a-Bgt (partial antagonist)b, MLA, DHbE

(full antagonists)

[52,53]

Drosophila

melanogaster

Kenyon cells The properties of the acetylcholine synaptic

currents were assessed from analysis of EPSC

a-Bgt blocks the ACh-induced current [54]

Ventral nerve

cord neurons

ACh D-TC (reversible inhibition) [55]

Clock neurons ACh, Nic Mec (incomplete blocking with lower

concentration)

[56]

Manduca sexta Abdominal ganglia

neurons

ACh, Nic D-TC and Mec (full antagonist on nACh

receptor containing MARA1 subunit)

[57,58]

Heliothis virescens Ventral nerve

cord neurons

N-desmethyl thiamethoxam, clothianidin, Imi nd [59]

Locusta migratoria Thoracic ganglia

neurons

ACh, physostigmine (partial competitive agonist) D-TC, bicuculline, hydrastine, gabazine

(partial antagonist)

[60]

aAbbreviations: Df, fast coxal depressor; DHbE, dihydro-b-erythroidine; D-TC, D-tubocurarine; Epi, epibatidine; EPSC, excitatory postsynaptic current; Hex, hexamethonium;

Imi, imidacloprid; Mec, mecamylamine; MLA, methyllycaconitine; nd, not determined; Nic, nicotine.
bOnly one concentration tested.
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these subunits can bind to a-Bgt; and (ii) they can form
heteromeric a-Bgt-sensitive receptors [9,10]. Thus, it
seems that insect native a-Bgt-sensitive receptors can
be either heteromeric or homomeric. Indeed, Da5, Da6
or Da7 can form homomeric [7] or heteromeric receptors
containing additional a or b subunits [8,11].

nACh receptor-associated proteins: possible roles in
function and assembly
Molecular cloning followed by functional expression in
either Xenopus laevis oocytes or cultured mammalian cell
lines has enabled studies of the physiology and pharma-
cology of vertebrate nACh receptors of defined subunit
composition, which can reflect native nACh receptor
subtypes [12–15]. Unfortunately, these approaches have
failed in insect nACh receptor subunit expression studies,
except for the Schistocerca nACh receptor Sga1 [16,17]. In
vertebrates, crucial control steps for functional expression
include transcriptional regulation [18], subunit folding and
assembly [19,20], transport [21,22], clustering and surface
stability [23]. However, the reasons for the poor hetero-
logous surface expression of insect nACh receptor subunits
are not well understood. Thus, it is essential to identify
cellular factors that influence the expression of functional
insect nACh receptors to enable robust heterologous
expression and, therefore, provide a new research tool.
For example, it has been shown that coexpression of the
protein encoded by the resistance to inhibitors of cholines-
terase gene (ric-3) in Xenopus laevis oocytes enhances (i)
(M37981), a4 (L35901), a5 (M83712), a6 (U62435), a7 (X70297), a9 (CAB65091), a10 (AJ27

subunits, Ama2 is equivalent to Amela2, Ama3 is equivalent to Amela8, Ama7-1 is eq

www.sciencedirect.com
the functional expression of the Caenorhabditis elegans
nACh receptor DEG-3/DES-2 [19] and (ii) the formation of
functional a7 receptors expressed in mammalian cells
[24,25]. Interestingly, ric-3 belongs to a conserved gene
family found in both vertebrates and invertebrates [19,20].
However, because the role of ric-3 depends on the identity
of the coexpressed receptors [25], it is not possible to say, a
priori, if coexpression of this protein would lead to succ-
essful heterologous expression of insect nACh recep-
tors [20,24]. Other factors, such as transcriptional
elements located at the 50-noncoding region of the a9
subunits [18] and intracellular factors (e.g. chaperone,
scaffolding or adaptor proteins, such as the 14-3-3 protein
family [21]), can enhance the expression levels of nACh
receptors. The lack of such important nACh receptor-
associated proteins could explain in part the failure to
express robust functional insect nACh receptor subunits
in cell lines commonly used for expression.

Selectivity of neonicotinoids for insect nACh receptors
The neonicotinoid insecticides, such as imidacloprid, show
sensitivity for both native and recombinant insect nACh
receptors, attributable in part to the imidazolidine ring
[26,27]. Chemical modification of this imidazolidine ring
can lead to greater affinity, as is the case with clothianidin
[27], for example. In studies of Drosophila–chicken
Da2–b2 and Da1–b2 hybrid receptors expressed in
Xenopus laevis oocytes, the neonicotinoid ligands tested
[e.g. des-nitro-imidacloprid, nitempyram and the nitro-
8118), b2 (X53179), b3 (X67513), b4 (X68275). Gallus gallus: a8 (X52296). For the bee

uivalent to Amela7, and Ama7-2 is equivalent to Amela5 [61].
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methylene analogue of imidacloprid (CH-IMI)] activate the
Da2–b2 receptors. By contrast, imidacloprid and CH-IMI
are ineffective in activating the Da1–b2 receptors [28].
These results reveal that the a subunit contributes to
the selectivity of imidacloprid for insect nACh receptors
Figure 3. The nACh receptor and ACh-binding domain. (a) At the interface between two

binding site for both agonist and antagonist are indicated in relation to the ACh-bindin

three loops (D, E and F) by the non-a interface in heteromeric receptors. (b) Loops B an

subunit. The serine residue in loop B, conferring resistance to imidacloprid, is indicated

Insertion of this proline in the Da2–a4 chimaeric receptor results in a marked displac

adjacent cysteine residues characteristic of loop C in the a subunit are indicated in r

tryptophan residue in loop B and two tyrosine residues in loop C are indicated by aste

Nilaparvata lugens Nla1 and Ctenocephalides felis Cfa1, Cfa3 and Cfa4.

www.sciencedirect.com
and that specific residues in the Da2 subunit could explain
enhancement of neonicotinoid affinity [28]. Mutation of the
proline at position 242 to glutamic acid (P242E) in
the Drosophila Da2 subunit (Figure 3) induces a shift of
the half effective concentration (EC50) and Imax values for
subunits, the location of the six loops (A–F) believed to be important in forming the

g domain. Three loops (A, B and C) are contributed by the a subunit interface and

d C of insect subunits showing resistance to imidacloprid attributable to a specific

by the arrow. The arrowhead indicates the position of proline in the YXCC motif.

ement to the left of the concentration–response curve for imidacloprid. The two

ed. Conserved residues in loops B and C are indicated in green. The conserved

risks. Note that these tyrosine residues are not conserved in Bemisia tabaci Bta3,



Box 1. Intracellular pathways regulating insect nACh receptor function

Both activation (+) and inhibition (�) of insect nACh receptors are

regulated by phosphorylation-dependent mechanisms (Table I, Figure

I). The activity of the ‘target proteins’ is stimulated by elevation of

the concentration of intracellular ‘second messengers’, which is

modulated by different enzyme activities or variation of the intracel-

lular calcium concentration ([Ca2+]i), or both.

Insect nACh receptor function can be mediated by cAMP pathways.

At relatively low internal concentrations, cAMP increases the nicotine-

induced current but at greater concentrations it reduces current

amplitude. This bell-shaped dose-dependent effect occurs through

the cAMP–PKA cascade by the activation of adenylyl cyclase (AC),

which maintains the cAMP level necessary to modulate nACh receptor

responses. Additionally, AC activity can be regulated by intracellular

Ca2+ acting through the calcium-receptor protein CaM, indicating that

Ca2+/calmodulin-dependent protein kinase II (CaMKII) can affect nACh

receptor function directly through [Ca2+]i. Another pathway that

regulates insect nACh receptor function involves cGMP through protein

kinase G (PKG) activation. In fact, elevation of cGMP stimulates the

activity of PKG, which can downregulate insect nACh receptors. In this

case, the nitric oxide (NO)-induced stimulation of guanylate cyclase

(GC) or variation of the [Ca2+]i signal can modulate cGMP-dependent

PKG activation, which thereby affects nACh receptor responses.

In addition to these complex phosphorylation mechanisms

including PKA, PKG or CaMK pathways, two different types of protein

kinase C (PKC) (classical and novel PKC, termed PKC1 and PKC2,

respectively) can up- and down-regulate insect neuronal nACh

receptor functions through changes in [Ca2+]i and muscarinic receptor

activation. Thus, the stimulation of muscarinic receptors by low

concentrations of muscarine leads to activation of phospholipase C

(PLC) causing hydrolysis of phosphatidylinositol (4,5)-bisphosphate

(PtdIns(4,5)P2) into inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3) and

diacylglycerol (DAG), which activates PKC1 through an elevation of

[Ca2+]i. By contrast, marked elevation of [Ca2+]i results in a protein

phosphatase (PP2B)-induced inhibition of PKC1. In this case, the

calcium-independent activation of PKC2 can be used to maintain

downregulation of nACh receptor 1 function. These complex

regulatory mechanisms of insect nACh receptors, which indicate

possible cross-talk between different pathways, have fundamental

consequences, particularly for the mode of action of insecticides.

Table I. Putative phosphorylation sites on insect a7-like
subunits between transmembrane domains TM3 and TM4

Subunits Putative phosphorylation sites

PKA and PKG PKC

Drosophila melanogaster

Da5 0 3

Da6 1 4

Da7 0 1

Heliothis virescens

Hva7-1 0 1

Hva7-2 1 2

Myzus persicae

Mpa7-2 0 0

Apis mellifera

Ama7-1a 0 3

Ama7-2a 0 1

Anopheles gambiae

Agama5 0 3

Agama6 1 5

Agama7 0 1

Bemisia tabaci

Bta7-2 0 2
aAma7-1 and Ama7-2 are equivalent to Amela7 and Amela5, respectively [61]

Figure I. Upregulation and downregulation of insect nACh receptors. Five different pathways for activating (+) or inhibiting (�) insect nACh receptors are shown. The

pathway involving AC and PKA is shown in red. The pathways involving PLC and DAG are shown in blue and green. The pathway represented in blue is sensitive to

[Ca2+]i and involves PKC1. In the pathway shown in green, PKC2 is insensitive to [Ca2+]i and is involved in the inhibition of nACh receptor 1. A putative pathway that

involves cGMP and PKG is shown in orange; this pathway might be activated by GC (indicated by question mark). [Ca2+]i can act directly through CaMK to upregulate

nACh receptor 1 (pathway shown in brown).
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imidacloprid and a reduction of the EC50 of ACh on the
Da2–b2 hybrid receptor [29]. This indicates that proline
has a key role in the selective action of imidacloprid on the
Da2 subunit [30]. Interestingly, although the deletion
of the loop B–C interval (Figure 3b) from the Da2
subunit has little effect on the ACh and the imidacloprid
concentration–response curves, the combination of this
deletion with the P242E mutation in loop C reduced imi-
dacloprid sensitivity of the Da2–b2 hybrid receptor [29].
These results provide evidence that insect a subunits
possess motifs that modulate the actions of neonicotinoid
insecticides, and highlight the role of the loop B–C interval
in the neonicotinoid selectivity. Interestingly, this loop
varies in its amino acid sequence between insects [29].
The role of loop B in the actions of imidacloprid is
exemplified by recent studies on brown planthopper (Nila-
parvata lugens) [31,32] and cat flea nACh receptors [33]. A
field-collected population of N. lugens, selected with imi-
dacloprid for 25 generations in the laboratory, developed
more than 70-fold greater resistance compared with a
susceptible reference strain [31]. Comparison of cDNA
sequences of the four a subunits cloned from susceptible
and resistant strains revealed that a unique mutation of
conserved tyrosine to serine in loop B from Nla1 and Nla3
subunits confers resistance to imidacloprid [32]. Although
a comprehensive understanding of native receptors carry-
ing these mutations is still lacking, it seems that the loop
B–C region in the a subunit [29] and loop D in the non-a
subunit have a role in the selectivity of imidacloprid for
insect nACh receptors [34].

Intracellular regulation of insect neuronal nACh
receptors
Another novel and interesting feature is the recent
characterization of the intracellular regulation of insect
nACh receptors. An initial search for patterns of conserved
amino acid residues associated with phosphorylation sites
in nACh receptor subunits shows that they possess different
potential phosphorylation sites for cAMP-dependent pro-
tein kinase A (PKA), protein kinase C (PKC), calcium-cal-
modulin-dependent protein kinase (CaM kinase) and
endogenous protein tyrosine kinase [35,36]. Thus, like their
vertebrate neuronal nACh receptor counterparts [37,38],
insect nACh receptors are regulated by phosphorylation
(Box 1). For example, the ACh responses of a cockroach
(Periplaneta americana) motor neuron are modulated by a
cAMP-mediated phosphorylation-dependent intracellular
signalling pathway [39]. Moreover, two a-Bgt-sensitive
nACh receptor subtypes have been characterized in uniden-
tified thoracic ganglionneurons [40] based on their different
ratesof desensitization.The ‘desensitizing’ nAChreceptor is
selectively inhibited by imidacloprid, and the ‘nondesensi-
tized’ nACh receptor is selectively blocked by methyllyca-
conitine [40]. Based on these findings, it has been suggested
that the variability of the rate of desensitization of nACh
receptor might be caused in part by phosphorylation pro-
cesses [40]. In the same way, two types of native a-Bgt-
insensitive nACh receptors, named nACh receptor 1 and
nACh receptor 2, have been characterized in cockroach
dorsal unpaired median (DUM) neurons. nACh receptor
1, which is insensitive to imidacloprid, is the only nACh
www.sciencedirect.com
receptor that ismodulated by intracellularmessengers such
asPKA,CaMkinase IIand theproteinphosphatasePP1–2A
[41]. Moreover, its function is upregulated by PKC1 and
downregulated by PKC2, which differ in their pharmacolo-
gical properties and intracellular calciumsensitivity. PKC1,
which is activated by the phorbol ester phorbol 12-myristate
13-acetate (PMA), and insensitive to rottlerin, is dependent
on intracellular calcium, whereas PKC2, activated by the
diacylglycerol analogue DiC8 and inhibited by rottlerin, is
calcium-independent [42]. From these results, we suggest
that, in contrast to nACh receptor 2, nACh receptor 1
possesses a consensus sequence for intracellular phosphor-
ylation, probably in the transmembranedomainTM3–TM4.
Indeed, by comparing all known insect sequences, potential
candidates for specific phosphorylation mechanisms
emerge. For instance, in Apis mellifera, Ama7-1 and
Ama7-2 subunits seem to be good candidates for PKC
phosphorylation (Box 1). It should be noted that, in the
human a7 neuronal nACh receptor, mutation of the con-
served tyrosines 386 and 442 to alanine accounts for recep-
tor insensitivity to kinase or phosphatase [37], indicating
that functional properties of the receptor depend on the
tyrosine phosphorylation status. By contrast, these tyro-
sines 386 and 442 that are conserved in vertebrate nACh
receptor subunits are not conserved in all insect nACh
receptor subunits. This might explain in part the different
degree of phosphorylation observed between insect nACh
receptors. From these studies, it seems that elevated intra-
cellular concentrations of cAMP [41] or cGMP [43] (or both),
which stimulate the activity of the respective protein
kinases, PKA and PKG, which in turn activate the
phosphorylation of consensus sequences, could affect the
action of insecticides, as has been previously demonstrated
for imidacloprid [41].

Concluding remarks
Coexpression of insect a subunits with vertebrate b

subunits (hybrid nACh receptors), in addition to studies
of chimaeric subunits, has provided important new
insights into the pharmacological properties of insect
nACh receptors [11,28,33,44]. But, in view of the problems
associated with heterologous expression, other approaches
such as RNA interference and studies of nACh receptor
mutants in combination with functional studies will
help to resolve the contribution of individual nACh recep-
tor subunit genes to native insect receptors. For example,
Da7 mutants have been identified in the giant fiber of
the Drosophila central nervous system [7] and could be
used to analyse and compare the pharmacological proper-
ties of insect a7-like receptors, as has been done in mice
[45].

To date, functional recombinant nACh receptors have
been obtained only with the Schistocerca gregaria Sga1
subunit, and the resulting currents are of low amplitude
[16,17,46]. Reasons for lack of robust expression are
complex and can be explained as follow: (i) lack of an
appropriate b subunit; (ii) lack of key associated proteins;
(iii) failure to find appropriate host cell for expression; or
(iv) inappropriate intracellular signalling pathways
controlling nACh receptor function. A prime objective
for the future will be to identify the key molecular
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components and a host cell that will facilitate robust
functional expression.

Historically, the problem of insect resistance to
insecticides, which arose most commonly from mutation
of key amino acids, has been avoided by continually intro-
ducing new insect control chemicals. An exciting prospect
for insect nACh receptors is to confirm the importance of
these residues, particularly in the loop B–C region, to
understand imidacloprid selectivity better in other sensi-
tive insect species [47,48]. In addition, we have shown that
intracellular phosphorylation of insect nACh receptors
affects insecticide sensitivity [41]. Because nACh receptor
1 is phosphorylated by PKA and two different PKCs, we
have suggested that nACh receptor 1 possesses potential
sites for PKA and PKC between the transmembrane
domains TM3 and TM4. Comparative analysis of these
potential phosphorylation sites in all insects will help
improve understanding of the involvement of phosphoryla-
tion in the modulation of insecticide action.
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